Dynamical Upper Bounds for One-dimensional Quasicrystals

نویسنده

  • DAVID DAMANIK
چکیده

Following the Killip-Kiselev-Last method, we prove quantum dynamical upper bounds for discrete one-dimensional Schrödinger operators with Sturmian potentials. These bounds hold for sufficiently large coupling, almost every rotation number, and every phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-dimensional Spectral Properties of One-dimensional Quasicrystals

We consider discrete one-dimensional Schrödinger operators on the whole line and establish a criterion for continuity of spectral measures with respect to log-Hausdorff measures. We apply this result to operators with Sturmian potentials and thereby prove logarithmic quantum dynamical lower bounds for all coupling constants and almost all rotation numbers, uniformly in the phase.

متن کامل

Eigenvalue Spacings and Dynamical Upper Bounds for Discrete One-Dimensional Schrödinger Operators

We prove dynamical upper bounds for discrete one-dimensional Schrödinger operators in terms of various spacing properties of the eigenvalues of finite volume approximations. We demonstrate the applicability of our approach by a study of the Fibonacci Hamiltonian.

متن کامل

-continuity properties of one-dimensional quasicrystals

We apply the Jitomirskaya-Last extension of the Gilbert-Pearson theory to discrete one-dimensional Schrr odinger operators with potentials arising from generalized Fibonacci sequences. We prove for certain rotation numbers that for every value of the coup ling constant, there exists an > 0 such that the corresponding operator has purely-continuous spectrum. This result follows from uniform uppe...

متن کامل

Uniform spectral properties of one-dimensional quasicrystals, II. The Lyapunov exponent

In this paper we introduce a method that allows one to prove uniform local results for one-dimensional discrete Schrödinger operators with Sturmian potentials. We apply this method to the transfer matrices in order to study the Lyapunov exponent and the growth rate of eigenfunctions. This gives uniform vanishing of the Lyapunov exponent on the spectrum for all irrational rotation numbers. For i...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007